AbboMax, Inc

Abstract#: 3507 Poster Section#: 6 Board#: 16

A Novel Method of Developing a High-Affinity Monoclonal Antibodies to Capture Native or Pegylated Human Granulocyte Colony-Stimulating Factor (G-CSF)

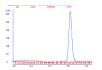
Yuan Zhou¹, Xin Wang², Hongzhi Liu¹ 1: AbboMax, Inc., San Jose, California, USA 2: Key lab of Stem Cells Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China

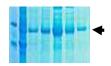
ABSTRACT

G-CSF (granulocyte-colony stimulating factor) is a haematopoietic growth factor which usually used as a drug with chemotherapy to boost white blood cell regeneration. In current study, an association of the augmented expression of G-CSF has been revealed in many advanced tumors and/or poor prognosis in some clinical cases. Immunohistochemical analysis and immunoassay to determine the protein expression level of G-CSF in advanced-stage or poorly differentiated adenocarcinoma become essential to monitor patients who are receiving or are to receive medication. Thus, the detection of human G-CSF level becomes very important in the patients under medication.

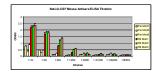
In this study, by using our proprietary techniques, we've developed a panel of high-affinity monoclonal antibodies which were selected by native G-CSF and Pegylated G-CSF in vitro. The Kd of the monoclonal G-CSF antibodies is ranged from 50 picomolar to 1 micromolar. Higher affinity to pegylated human G-CSF and relatively low affinity to native human G-CSF were observed when spleenocytes were challenged by the same dosage of two different format of proteins. We've selected the highest affinity antibody as a capture reagent, detected the lowest levels of native human G-CSF at 2.1 pg/ml and pegylated G-CSF at 4.8 pg/ml by recovery assays. The linear range of G-CSF detection is 5 pg/ml-15 ng/ml in both proteins.

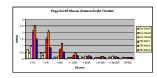
In conclusion, we have developed a novel technique to produce a panel of high affinity antibodies. Additionally, we discovered the different performance of the native G-CSF and pegylated G-CSF in vivo. Our observation provided contradictory concerns in protein drug discovery: half-life enhancement or minimum immunogenicity.

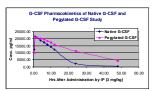

MATERIALS AND METHODS


1: G-CSF recombinant protein construction/purification and Pegylation

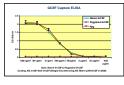
Human G-CSF (175 aa/19kDa)


mapigptgpi pqsfilkcie qmrkvqadgt alqeticath qichpeelvi ighalgipqp 61 pisscssqal qincqirqih sgifiyaqil qalagispel aptidtiqid ttdfainiwq 121 qmedigmapa ypptqgtmpa ftsafqrrag gvivasniqs flelayrair hfaky





2: Antibody development and characterization



3: Pharmacokinetic studies of Nati-G-CSF and Pegy-G-CSF on two group of animals (5x/group)

4: G-CSF ELISA Capture Assavs

	Native GCSF	Regulated GCSF	Neg
500 ng/mi	2120	2043	0.066
50ng/mi	20625	2063	0.066
5ng/ml	1.5542	1688	0.059
500 pg/ml	0.8091	0.869	0.058
50pg/ml	0.2802	0222	0.060
5pg/ml	0.0675	0.0833	0.061
05pg/ml	0.0882	0.0598	0.064
0.05pg/ml	0.0707	0.0679	0.071

	Native G-CSF	Pegylated G-CSF	Neg
00 ng/m l	2.0909	1.9531	0.0754
0 ng/m1	2.0638	2.0198	0.0777
ng/m l	1.3275	1.2463	0.08
00 pg/m1	0.6892	0.9077	0.0751
0 pg/m1	0.251	0.2807	0.0822
pg/m1	0.0817	0.0923	0.0794
.5 pg/m1	0.0724	0.0805	0.0867
.05 pg/ml	0.0864	0.0848	0.0969

CONCLUSIONS

The technique of generating high affinity antibody may become an attractive strategy for the therapy of carcinomas. In this study, we demonstrated that the native G-CSF and Pegylated G-CSF performed differently in vivo. The half-life of pegylated form is much longer than the native form (25 hr vs 10 hr). The follow-up study with the same animals were conducted to generate different antibodies varying from its applications. We obtained a panel of antibodies to establish quantitative immunoassays to detect two forms of G-CSF. Our results indicated that the different antibodies may be related to the different form of the proteins and/or lead us to a new area for the recombinant protein therapy: half-life extended by pegylation may lead an immunogenic enhancement due to the prolong exposure of the protein to its immune system.

REFERENCES

- 1: A Cancer Journal for Clinicians: new developments in cancer, November 27, 2007, 1542-4863 http://caonline.amcancersoc.org
- 2: Morstyn G, Dexter T, Foote M. Physician Desk Reference (2008) Filgrastim (r-metHuG-CSF) in clinical practice, 44th Edition (3) 51-71
- 3: Ab^{Max} Human G-CSF Immunoassay Kit (AbboMax, Cat# 700-101)

Contac information:kellyz@abbomax.com